
There is a type of substitution which, for lack of a better name, could be called

Brute Force Substitution

In Brute Force Substitution, you let u a very complex part of the integrand
(which may include a function composition, but usually not a product or quotient),
then solve for the original variable if possible,
and proceed with the substitution and see where it takes you.

This type of substitution is similar to trigonometric substitution,
except that the original variable is replaced with other types of functions.

Consider  dxxarcsin .

In a regular substitution, you might set xu  since x  is the inner function
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 duuu arcsin2  can then be evaluated by using integration by parts followed by a trigonometric substitution. (Try it.)

So, altogether, 3  different techniques were required.

In a brute force substitution, you might set xu arcsin
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 duuu 2sin  can then be evaluated by using only integration by parts. (Try it.)

So, altogether, only 2  different techniques were required.
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but its derivative is rather ugly and hard to identify as a factor.
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 can then be evaluated by using polynomial long division. (Try it.)

So, when using substitution on a complex integrand,
try being as aggressive as possible in your choice of the substitution.
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 can then be evaluated by using polynomial long division. (Try it.)


So, when using substitution on a complex integrand,

try being as aggressive as possible in your choice of the substitution.
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